A chaotic function possessing a scrambled set with positive Lebesgue measure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Affine Sets with Positive Lebesgue Measure

Using techniques introduced by C. Güntürk, we prove that the attractors of a family of overlapping self-affine iterated function systems contain a neighbourhood of zero for all parameters in a certain range. This corresponds to giving conditions under which a single sequence may serve as a ‘simultaneous β-expansion’ of different numbers in different bases.

متن کامل

A Positive Function with Vanishing Lebesgue Integral in Zermelo–fraenkel Set Theory

Can a positive function on R have zero Lebesgue integral? It depends on how much choice one has.

متن کامل

Lebesgue Measure

How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...

متن کامل

A C1 Map with Invariant Cantor Set of Positive Measure

Many examples exist of one-dimensional systems that are topologically conjugate to the shift operator on Σ2 and are thus chaotic. Most of these examples which have invariant Cantor subsets, have Cantor subsets of measure zero. In this paper we outline the formulation of a C map on a closed interval that has an invariant Cantor subset of positive Lebesgue measure. We also survey techniques used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1984-0749887-4